Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex.
نویسندگان
چکیده
Whole-cell voltage recordings were made in vivo from excitatory neurons (n = 23) in layer 4 of the barrel cortex in urethane-anaesthetised rats. Their receptive fields (RFs) for a brief whisker deflection were mapped, the position of the cell soma relative to barrel borders was determined for 15 cells and dendritic and axonal arbors were reconstructed for all cells. Three classes of neurons were identified: spiny stellate cells and pyramidal cells located in barrels and pyramidal cells located in septa. Dendritic and, with some exceptions, axonal arborisations of barrel cells were mostly restricted to the borders of a column with a cross sectional area of a barrel, defining a cytoarchitectonic barrel-column. Dendrites and axons of septum cells, in contrast, mostly extended across barrel borders. The subthreshold RFs measured by evoked postsynaptic potentials (PSPs) comprised a principal whisker (PW) and several surround whiskers (SuWs) indicating that deflection of a single whisker is represented in multiple barrels and septa. Barrel cells responded with larger depolarisation to stimulation of the PW (13.7 +/- 4.6 mV (mean +/- S.D.), n = 10) than septum cells (5.7 +/- 2.4 mV, n = 5), the gradient between peak responses to PW and SuW deflection was steeper and the latency of depolarisation onset was shorter (8 +/- 1.4 ms vs. 11 +/- 2 ms). In barrel cells the response onset and the peak to SuW deflection was delayed depending on the distance to the PW thus indicating that the spatial representation of a single whisker deflection in the barrel map is dynamic and varies on the scale of milliseconds to tens of milliseconds. Septum cells responded later and with comparable latencies to PW and SuW stimulation. Spontaneous (0.053 +/- 0.12 action potentials (APs) s(-1)) and evoked APs (0.14 +/- 0.29 APs per principal whisker (PW) stimulus) were sparse. We conclude that PSPs in ensembles of barrel cells represent dynamically the deflection of a single whisker with high temporal and spatial acuity, initially by the excitation in a single PW-barrel followed by multi-barrel excitation. This presumably reflects the divergence of thalamocortical projections to different barrels. Septum cell PSPs preferably represent multiple whisker deflections, but less dynamically and with less spatial acuity.
منابع مشابه
Sub- and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex.
Layer 5 (L5) pyramidal neurones constitute a major sub- and intracortical output of the somatosensory cortex. This layer 5 is segregated into layers 5A and 5B which receive and distribute relatively independent afferent and efferent pathways. We performed in vivo whole-cell recordings from L5 neurones of the somatosensory (barrel) cortex of urethane-anaesthetized rats (aged 27-31 days). By deli...
متن کاملاثر تحریک الکتریکی هسته رافه خلفی بر پاسخ برانگیخته نورونهای لایه IV و V قشر بارل (بشکهای) در موش صحرایی
Effect of the Dorsal Raphe Nucleus Electrical Stimulation on Evoked Response of the IV Layers and V Barrel Cortical Neurons in Rat M.R Afarinesh MSc , V. Sheibani PhD , R. Farazifard MSc 1, M. Abasnegad PhD , A. Shamsi zadeh MSc Received: 17/09/06 Sent for Revision: 13/03/07 Received Revised Manuscript: 13/06/07 Accepted: 27/06/07 Background and Objective: Seretonergic pathway is one of the neu...
متن کاملCell type-specific circuits of cortical layer IV spiny neurons.
Sensory signal processing in cortical layer IV involves two major morphological classes of excitatory neurons: spiny stellate and pyramidal cells. It is essentially unknown how these two cell types are integrated into intracortical networks and whether they play different roles in cortical signal processing. We mapped their cell-specific intracortical afferents in rat somatosensory cortex throu...
متن کاملHigh‐ and low‐conductance NMDA receptors are present in layer 4 spiny stellate and layer 2/3 pyramidal neurons of mouse barrel cortex
N-Methyl-D-aspartate (NMDA) receptors are ion channels activated by the neurotransmitter glutamate in the mammalian brain and are important in synaptic function and plasticity, but are also found in extrasynaptic locations and influence neuronal excitability. There are different NMDA receptor subtypes which differ in their single-channel conductance. Recently, synaptic plasticity has been studi...
متن کاملSubcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex.
Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully mea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 543 Pt 1 شماره
صفحات -
تاریخ انتشار 2002